American Journal of Clinical Medicine Research. 2013, 1(3), 35-39
DOI: 10.12691/AJCMR-1-3-1
Original Research

The Correlation between Uric Acid Levels and Amyotrophic Lateral Sclerosis

Yu-Wei Lin1, , Thy-Sheng Lin2 and Ming-Liang Lai2

1Department of Neurology, Mackay Memorial Hospital, Taiwan

2Department of Neurology, National Cheng Kung University Hospital, Taiwan

Pub. Date: May 16, 2013

Cite this paper

Yu-Wei Lin, Thy-Sheng Lin and Ming-Liang Lai. The Correlation between Uric Acid Levels and Amyotrophic Lateral Sclerosis. American Journal of Clinical Medicine Research. 2013; 1(3):35-39. doi: 10.12691/AJCMR-1-3-1

Abstract

Introduction Uric acid (UA) may act as an antioxidant in ALS pathophysiology. This study examined whether serum UA concentration correlates to clinical course in the ALS patients. Methods We measured serum UA levels in 51 sporadic ALS patients, and compared them to 51 age-and-gender-matched healthy subjects. We analyzed the correlation between serum UA levels, illness duration, and disease “course factors” (defined as “disease duration” over “terminal time”) in the ALS patients. Results The mean serum UA levels in the ALS groups were higher than the control groups in both genders. Serum UA levels were inversely correlated with the disease “course factors” in the ALS male patients. Discussion The elevation of serum UA concentration in ALS patients may be related to oxidative stress. The reasons that serum UA levels inversely correlated with ALS “course factors” include: muscle wasting, poor nutrition, reduced antioxidant reserve, or increased UA consumption in end-stage patients.

Keywords

amyotrophic lateral sclerosis, uric acid, oxidative stress, SOD1, TDP-43

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Kokić AN, Stević Z, Stojanović S, Blagojević DP, Jones DR, Pavlović S, et al. Biotransformation of nitric oxide in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 2005; 10(5):265-270.
 
[2]  Schwarzschild MA, Schwid SR, Marek K, Watts A, Lang AE, Oakes D, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 2008; 65(6):716-723.
 
[3]  Láhoda F, Athen D. Typing of uric acid level in cerebrospinal fluid in neurological and psychiatric disease. Adv Exp Med Biol 1977; 76B:256-258.
 
[4]  Niklasson F, Agren H. Brain energy metabolism and blood-brain barrier permeability in depressive patients: analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol Psychiatry 1984; 19(8):1183-1206.
 
[5]  Rentzos M, Nikolaou C, Anagnostouli M, Rombos A, Tsakanikas K, Economou M, et al. Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg 2006; 108(6):527-531.
 
[6]  Sánchez-Lozada LG, Nakagawa T, Kang DH, Feig DI, Franco M, Johnson RJ, et al. Hormonal and cytokine effects of uric acid. Curr Opin Nephrol Hypertens 2006; 15(1):30-33.
 
[7]  Schlesinger I, Schlesinger N. Uric acid in Parkinson's disease. Mov Disord 2008; 23(12):1653-1657.
 
[8]  Spitsin SV, Scott GS, Kean RB, Mikheeva T, Hooper DC. Protection of myelin basic protein immunized mice from free-radical mediated inflammatory cell invasion of the central nervous system by the natural peroxynitrite scavenger uric acid. Neurosci Lett 2000; 292(2):137-141.
 
[9]  Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity. J Immunol 2000; 165(11):6511-6518.
 
[10]  Mattle HP, Lienert C, Greeve I. Uric acid and multiple sclerosis. Ther Umsch 2004; 61(9):553-555.
 
[11]  Spitsin SV, Scott GS, Kean RB, Mikheeva T, Hooper DC. Protection of myelin basic protein immunized mice from free-radical mediated inflammatory cell invasion of the central nervous system by the natural peroxynitrite scavenger uric acid. Neurosci Lett 2000; 292(2):137-141.
 
[12]  Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, et al. Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis. Science 1996; 271:515-518.
 
[13]  Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006; 7(9):710-723.
 
[14]  Ayala V, Granado-Serrano AB, Cacabelos D, Naudí A, Ilieva EV, Boada J, et al. Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS. Acta Neuropathol. 2011; 122(3):259-70.
 
[15]  Braun RJ, Sommer C, Carmona-Gutierrez D, Khoury CM, Ring J, Büttner S, et al. Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem. 2011; 286(22):19958-72.
 
[16]  Duan W, Li X, Shi J, Guo Y, Li Z, Li C. Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell. Neuroscience. 2010; 169(4):1621-9.
 
[17]  Schlesinger N. Dietary factors and hyperuricaemia. Curr Pharm Des 2005; 1:4133-4138.
 
[18]  Garrel DR, Verdy M, PetitClerc C, Martin C, Brule D, Hamet P. Mild- and soy-protein ingestion: acute effect on serum uric acid concentration. Am J Clin Nutr 1991; 53:665.
 
[19]  Hodgson EK, Fridovich I. Interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide. Chemiluminescence and peroxidation. Biochemistry 1975; 14(24):5299-5303.
 
[20]  Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the third national health and nutrition examination survey. Arthritis Rheum 2005; 52:283-9.